On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults

نویسندگان

  • J. Vergne
  • R. Cattin
  • J. P. Avouac
چکیده

Creeping dislocations in an elastic half-space are commonly used to model interseismic deformation at subduction zones, and might also apply to major intracontinental thrust faults such as the Main Himalayan Thrust. Here, we compare such models with a more realistic 2-D finite element model that accounts for the mechanical layering of the continental lithosphere and surface processes, and that was found to fit all available constraints on interseismic and long-term surface displacements. These can also be fitted satisfactorily from dislocation models. The conventional back-slip model, commonly used for subduction zones, may, however, lead to a biased inference about the geometry of the locked portion of the thrust fault. We therefore favour the use of a creeping buried dislocation that simulates the ductile shear zone in the lower crust. A limitation of dislocation models is that the mechanical response of the lithosphere to the growth of the topography by bending of the elastic cores and ductile flow in the lower crust cannot be easily introduced. Fortunately these effects can be neglected because we may assume, to first order, a stationary topography. Moreover, we show that not only can dislocation models be used to adjust surface displacements but, with some caution, they can also provide a physically sound rationale to interpret interseismic microseismicity in terms of stress variations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation flow analysis and symmetry of Goushti shear zone, Sanandaj-Sirjan metamorphic belt, Iran

Finite strain and vorticity analyses were carried out in the deformed conglomerate and micro-conglomerate of Goushti shear zone in the Sanandaj-Sirjan metamorphic belt (Zagros Mountains Iran). These deformed rocks are bounded between two NE and SW major thrust faults. Finite strain measurements on three principal planes of strain ellipsoid show the higher amounts of strain ratios near the major...

متن کامل

The Dynamics of Thrust and Normal Faults over Multiple Earthquake Cycles: Effects of Dipping Fault Geometry

We perform dynamic simulations of thrust and normal faults over multiple earthquake cycles. Our goal is to explore effects of asymmetric fault geometry on the long-term seismicity and dynamics of dipping faults. A dynamic finite-element method is used to model the interseismic and coseismic processes, with a dynamic relaxation technique for the former. The faults are loaded by stable sliding al...

متن کامل

A 667 year record of coseismic and interseismic Coulomb stress changes in central Italy reveals the role of fault interaction in controlling irregular earthquake recurrence intervals

Current studies of fault interaction lack sufficiently long earthquake records and measurements of fault slip rates over multiple seismic cycles to fully investigate the effects of interseismic loading and coseismic stress changes on the surrounding fault network. We model elastic interactions between 97 faults from 30 earthquakes since 1349 A.D. in central Italy to investigate the relative imp...

متن کامل

Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults

[1] We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly ab...

متن کامل

Interseismic coupling on the main Himalayan thrust

We determine the slip rate and pattern of interseismic coupling on the Main Himalayan Thrust along the entire Himalayan arc based on a compilation of geodetic, interferometric synthetic aperture radar, and microseismicity data. We show that convergence is perpendicular to the arc and increases eastwards from 13.3 ± 1.7 mm/yr to 21.2 ± 2.0 mm/yr. These rates are comparable to geological and geom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001